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ABSTRACT

The distribution of model-based estimates of equilibridimate sensitivity has not changed sub-
stantially in more than 30 years. Efforts to narrow this rilisition by weighting projections ac-
cording to measures of model fidelity have so far failed,dardpecause climate sensitivity is inde-
pendent of current measures of skill in current ensemblesoalels. Here we provide a cautionary
example showing that measures of model fidelity that aretffeat narrowing the distribution of
future projections (because they are systematicallyeeélat climate sensitivity in an ensemble of
models) may be poor measures of the likelihood that a modipmavide an accurate estimate of
climate sensitivity (and so degrade distributions of pebgns if they are used as weights). Fur-
thermore, it appears unlikely that statistical tests alareidentify robust measures of likelihood.
We consider two ensembles: one obtained by perturbing peessin a single climate model, and
a second containing the majority of the world’s climate med&he simple ensemble reproduces
many aspects of the multi-model ensemble, including thigiligions of skill in reproducing the
present-day climatology of clouds and radiation, the istron of climate sensitivity, and the de-
pendence of climate sensitivity on certain cloud regimeg.rdstricting error measures to those
regimes we can identify tighter relationships between atarsensitivity and model error and nar-
rower distributions of climate sensitivity in the simplesemble. These relationships, however, do
not carry into the multi-model ensemble. This suggestsrti@tel weighting based on statistical
relationships alone is unfounded, and perhaps that climatéel errors are still large enough that

model weighting is not sensible.



1. Model error and climate sensitivity

Equilibrium climate sensitivity, defined as the responsglabal-mean near-surface tempera-
ture to a doubling of atmospheric G@oncentrations from pre-industrial levels, is a usefukgro
for climate change because many other projections scateitwiClimate models produce a range
of estimates of climate sensitivity which can themselvesdesitive to fairly small changes in
model formulation (Soden et al. 2004). The distributionh@de projections has remained roughly
the same for more than 30 years (compare, for example, Gha@v®; Solomon et al. 2007).

One might expect that with improvements of climate modelerdime, projections would
converge to a narrower distribution, but this has not yevgdotrue: successive generations of
climate models have produced improved simulations of teegmt-day climate (Reichler and Kim
2008) but commensurate distributions of climate sengjtil{nutti et al. 2008).

The distribution might also be narrowed by invoking Baydls&sorem and weighting each pre-
diction of climate sensitivity by the likelihood of the cesponding model (Murphy et al. 2004;
Stainforth et al. 2005; Knutti et al. 2010). This likelihoadusually modeled as a decreasing
function of model error, defined as some measure of the diifax between long-term averages of
observations and model simulations of the present-dayatimWeighting ensembles is fraught
with theoretical issues including the impact of the sangpktrategy used to construct the ini-
tial ensemble (Frame et al. 2005) and questions of how td &e@nsemble in which members
have varying degrees of interdependence (e.g. Knutti &04l0; Tebaldi and Knutti 2007). But
weighting projections has so far failed to substantiallgron distributions of climate sensitivity
for a more practical reason: in current ensembles of climaddels, global measures of error are

not systematically related to climate sensitivity or thelertying feedbacks (Knutti et al. 2006;



Murphy et al. 2004; Piani et al. 2005; Sanderson et al. 2008irS et al. 2011).

Any observable measure of present-day error that is coecthaith climate sensitivity in a
given ensemble of climate projections, if used as a weighylevnarrow the distribution of cli-
mate sensitivity estimates. This makes it tempting to seiek sneasures. But if the systematic
relationships between the present day and the future in sendole of models have causes which
are not shared by the physical climate system, weightingiblg & measure can introduce substan-
tial projection errors (Weigel et al. 2010).

Here we provide a practical demonstration of how hard it catoltletermine whether relation-
ships between the present day and the future in a given emhsérae a more general basis. We
consider two ensembles of climate models: one containingda vange of models and another
employing a single model with varied values of closure patans. We use the simpler, single-
model ensemble as a proxy for understanding the behavidreainiore complicated multi-model
ensemble, much as one might use the more complicated eresémiphderstand the real world.
Section 2 describes the construction of the simple ensemigdhen show that this simple en-
semble reproduces several relevant aspects of the muttehemsemble. Section 4 describes the
construction of a metric of present-day performance thabrselated with climate sensitivity in
the simple model but does not generalize to the multi-moadstmble. We conclude by exploring

the implications for model weighting.



2. A simple ensemble spanning a range of errors and climate
sensitivities

We construct a perturbed-parameter ensemble by varyingathes of selected closure param-
eters (Table 1) in physical parameterizations of the géeralation model ECHAMS (Roeckner
et al. 2003). The parameters are uncertain in observatimhsi@ those used to adjust the model
so that its energy budget is balanced at the top of atmostoaréthin observational uncertainties
and accounting for ocean heat storage). Each parametsatiicted to fairly small ranges near the
default and all parameters are sampled simultaneously wsitin hypercube sampling (McKay
et al. 1979). Five hundred realizations of ECHAMS5 are creéated each model is run for a single
year using present-day climatological distributions @& & and sea surface temperature.

For each ensemble member, we compute an aggregate measieeeofor in simulating the
present-day distribution of clouds, radiation, and preaipn. Because it is not known which
observable aspects, if any, of the present-day climateameected to climate sensitivity, any ag-
gregate metric is arbitrary; we justify the narrow focus of ohoice by noting that a) differences
in cloud feedbacks drive much of the diversity in climatesstvity estimates from climate models
(Soden and Held 2006), particularly by affecting the radrabudget, and b) a majority of the var-
ied parameters are cloud-related. We compute the root-seaare error relative to observations
for cloud fraction, longwave and shortwave cloud radiat¥fects at the top of the atmosphere
(e.g. Hartmann and Short 1980), and surface precipitati@n each month of the annual cycle
(Pincus et al. 2008). These errors are much larger in outt sftegrations than for long runs
with well-tuned models because sampling errors are largdl, t8e difference in errors based

on individual years from longer runs (described below) is/\@mall relative to the difference in
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error spanned by the ensemble, indicating that the diyarsirror is robust. Errors in individual
fields are standardized so that the distribution of eachr amwss the ensemble has zero mean and
a standard deviation of one, then added together to providegregate error measure for each
model, where low errors reflect greater skill relative tossttnembers of the ensemble.

We sort the models according to this measure of aggregateanrd compute the equilibrium
climate sensitivity of every tenth model across the rangmggfregate skill (so that the distribution
of skill in the initial ensemble is roughly preserved). Tggar runs are performed using a slab
ocean model and present-day greenhouse gas concentrdétmmsvhich we determine the flux
corrections necessary to maintain present-day sea suefageeratures. A fifty-year simulation is
then performed using the same ocean heat flux correctionsittutioubled carbon dioxide con-
centrations. Equilibrium climate sensitivity is compugelthe difference in global mean surface

temperature between the last ten years of the doubleda@®the present-day simulations.

3. Thesimple ensemble as proxy for the multi-model ensemble

Results from this ensemble, in which all diversity arisesrfrparametric uncertainty, are com-
parable in many ways to the multi-model ensemble from thd@\@limate Research Programme’s
Coupled Model Intercomparison Project phase 3 (CMIP3; seehVlet al. 2007), which represents
the majority of the world’s climate models and contains bdnametric and structural variabil-
ity. In particular, the distributions of climate sensitiviFigure 1a) and our aggregated measure
of model error (Figure 1b) are similar in both ensembles.s€hguantities are not systematically
related to each other in either ensemble (Figure 2). Thdaiityiin the distributions of error and

sensitivity, as well as the lack of a connection betweenwlog mirror previous experiences across
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a wide range of perturbed-parameter ensembles (Murphy20@d; Stainforth et al. 2005; Collins
etal. 2011).

The two ensembles also share an important structural f=ative same mechanism underlies
the variability in climate sensitivity. In both ensemblemdels with a large change in the net cloud
radiative effect under doubled G@oncentrations are those with higher climate sensititygre
la). The longwave cloud radiative effect in our ensemblesame change much between present-
day and doubled COconditions, while diversity in shortwave cloud radiativitgeet (CREsy)
changes, in turn, is largely driven by diversity in the rasg® of low-latitude oceanic boundary
layer clouds (Bony and Dufresne 2005).

By these measures, the perturbed-parameter ensemblecisesstul proxy for the multi-model
ensemble. This allows us to test the generality of model eig techniques in two structurally

distinct but statistically similar ensembles.

4. Developing measures of model error linked to climate sensi-
tivity

We now design a measure of error in reproducing the pressntidnate that is explicitly re-
lated to climate sensitivity in our simple ensemble. We tdgrsuch a measure by focussing on
the low-latitude oceanic boundary layer clouds whose nespds tightly linked to climate sensi-
tivity (Bony and Dufresne 2005). Boundary layer clouds doaiteé CRE;, in subsidence regions,
i.e. where the mid-tropospheric pressure velocity is doantvs,, > 0), SO we sort present-

day CREy, by this quantity (Bony et al. 2004). In our ensemble the presgay distribution of



CREsy in subsidence regions differs markedly between the tendsigland ten lowest-sensitivity
model variants (Figure 3a). Higher sensitivity models haeaker values of CRf,, indicating
that clouds are some combination of less frequent, lesagixts or less reflective than in low-
sensitivity simulations. The higher sensitivity models atso more consistent with observations
(here, cloud radiative effect derived from satellite olbaions (Wielicki et al. 1996; Loeb et al.
2009) and sorted by, inferred from ERA-Interim reanalysis data (Simmons et 802). Al-
though the highest- and lowest-sensitivity models in oweenble are distinct from each other, at
the most frequent values of subsidence essentially all reesrdver-estimate CRE relative to
observations. In regions of large-scale ascegj(< 0) the distributions of CREy in the highest-
and lowest-sensitivity models are much broader and ovsitapficantly.

In nature, boundary layer clouds in subsiding regions owerdceans are further correlated
(Medeiros and Stevens 2011) with lower tropospheric thelynamic stability (LTS; see Brether-
ton and Wyant 1997; Klein and Hartmann 1993), here definetheslifference in the potential
temperature at 1000 hPa and 700 hPa. Our simple ensembbelueps this dependency as well
(Figure 3b). Through much of the range of LTS the highest- lameést-sensitivity models are
indistinguishable, but in the range 13KLTS < 17 K CREgy in the high-sensitivity models is
consistently weaker, and in better agreement with obsengtthan for low-sensitivity models.
These are the most frequent values of LTS in subsiding regioaur ensemble.

Figure 3 demonstrates why global measures of skill are ata@lto model climate sensitivity:
because the clouds whose systematic changes explain #msithn sensitivity occur in a small
region of the globe. Most measures of skill compare modetsb&ervations in global domains
(e.g. Gleckler et al. 2008; Pincus et al. 2008; Reichler aimd 2008). Restricting the geographical

domain over which errors are computed would not change ésigrmuch: even considering only
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the low-latitude oceans, the root-mean-square differantteobservations are influenced not only
by the regions controlling the sensitivity but also by aslieg regions, where errors are large, and
low-sensitivity models perform somewhat better, on averag

We define instead a conditioned error meagtiras the root-mean-square difference between
model simulations and observations of GREntegrated over regions with large-scale subsidence
(wso0 > 0.03 Pa s') and moderate lower tropospheric stability (13<KLTS < 17 K). Regions
satisfying both conditions comprise just 5% of the area efttpics (2.5% of the globe) in the
observations and somewhat more in the models. Nonethdless,a reasonably good predictor
of climate sensitivity in the simple ensemble (Figure 4)jeckhmeans it can be used to narrow the
distribution of climate sensitivity estimates. Figure 4tows the distribution of climate sensitiv-
ity obtained from the perturbed-parameter ensemble befodeafter weighting by the likelihood
L(E.) = exp(—E./2) (Murphy et al. 2004). The standard deviation of the postetistribution
is 3/4 of that of the prior distribution, mostly because a faadels with low sensitivity have large
errors and hence low weight. The mean climate sensitivity aicreases by 0.35 K.

But despite the many similarities between the perturbedspater and multi-model ensembles,
the systematic relationship between climate sensitivity /8. does not carry into the multi-model
ensemble (Figure 5), nor does the distribution of sengjtestimates from the multi-model en-

semble change when weighted byE..).



5. Implications for weighting projections from multi-model en-
sembles

One could conclude that we have obtained a null result andhieasingle-model perturbed-
parameter ensemble is, after all, a poor proxy for the nmtidel ensemble. Instead, we propose
that these calculations are a concrete illustration of sofiibe issues involved in the weighting
and more general interpretation of multi-model ensembles.

First, our results confirm that it is possible to obtain dlsttions of climate sensitivity and
global measures of error as diverse as those produced by uliemodel ensemble with even
modest variations about a single model. This suggests #rathility in error and sensitivity at
these levels is easy to come by (though why this is so remaiirgrgguing open question). In fact,
in our ensemble diversity in skill and climate sensitivitisas from surprisingly simple parametric
sensitivity: Climate sensitivity is primarily related the entrainment rate for shallow convection,
which varies along with a cloud mass flux parameter (expigidi4% of the variance in climate
sensitivity; Table 1), while aggregate error is relatedrtother parameter, the entrainment rate for
deep convection (explaining 64% of the variance in aggezbatror; Table 1). If broad diversity
in behavior can arise from underlying simplicity then theedsity itself is uninformative. This is
an illustrative reminder that the distribution of climatnsitivity from any model ensemble can
not be interpreted as an estimate of the total uncertaintyinmate sensitivity.

Second, while the motivation to narrow the distribution éfnate sensitivity estimates is
strong, our results dramatize the danger of focusing ei@lyson this goal. Relationships be-
tween sensitivity and model fidelity in any ensemble emergefan unknown mix of underlying

similarity in model representation and error, statistganpling error, and physical relationships
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also present in the natural world. This means that arbigraliosen error measures may arise
from underlying similarity not present in the physical ctita system. We argue that because met-
rics developed from the full multi-model ensemble alone panhbe falsified by comparison to
more general ensembles, they can not be justified as a m&déhtiod purely on the basis of
the strength of the statistical connection between thaticeatd climate sensitivity. Indeed, where
observations have been used successfully to constrainlmesgpense (Hall and Qu 2006; Clement
et al. 2009) statistical metrics have been bolstered byipalyarguments. Much depends on the
way weights are chosen, since incorrect weighting (thatvesghting not related to true model
likelihood) can substantially reduce the benefits of usimgm@semble of projections (Weigel et al.
2010).

Finally, it is possible that present-day models are not yéicsently accurate to benefit from
model weighting. Weighting model projections by skill is assertion that models are likely
to produce accurate estimates of future climate in proportd their ability to reproduce some
aspects of the present-day climate; the implicit assumpgsdahat models with higher skill are
more likely to be accurate representations of the physiocabte system. But by most measures,
no current climate model produces distributions of the gméslay climate statistically consistent
with observations (Gleckler et al. 2008; Pincus et al. 2@@8&,also Figure 3 and 5), implying that
all models are formally unlikely. Weighting an ensemble emtthese circumstances is essentially
asserting that incorrect models are more reliable than-evam-incorrect models. But the result
of Bayes’s theorem is ambiguous when the system being nebdelar from the system being
observed, and it may be that model weighting will be more tabke when the collection of models

we have is closer to the world we observe.
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1

List of perturbed parameters in the ECHAMS5 ensemble, thescription, default
value, the range they are varied in and the percentage lootm to the variation
in skill and climate sensitivity.! Default value in the atmosphere-only modél.

Default value in the coupled model. *Indicates coupled paaters, to keep top of

the atmosphere radiative fluxes close to balance.
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TABLE 1. List of perturbed parameters in the ECHAMS ensembler trescription, default value,
the range they are varied in and the percentage contribtdgidime variation in skill and climate
sensitivity. ' Default value in the atmosphere-only modélDefault value in the coupled model.
*Indicates coupled parameters, to keep top of the atmosphadiative fluxes close to balance.

Description Default Range R2[%) R*[%]
of parameter value Skill  Sensitivity
Entrainment rate for shallow convection* (Tiedtke 1989) 0am3 0.0003-0.001 3 44
Cloud mass flux above level of non-buoyanc* (Tiedtke 1989) 1'/0.3? 0.1-0.3333 3 44
Entrainment rate for penetrative convection (Tiedtke 3989 0.0001 0.00001 - 0.0005 64 0
Conversion rate from cloud water to rain (Tiedtke 1989) 040 0.0001-0.005 0 1
In-homogeneity of liquid clouds (Cahalan et al. 1994) 0.7 650.1 4 0
In-homogeneity of ice clouds (Cahalan et al. 1994) mB 0.65-1 20 1
Asymmetry of ice particles in clouds (Stephens et al. 1990).91'00.85 0.75-1 0 1
Coefficient for horizontal diffusion 12 6-24 6 5
Gravity wave drag activation threshold (mean) (Lott 1999) 005 400 - 1000 2 0
Gravity wave drag activation threshold (stddev) (Lott 1999 200 100 - 700 2 0
Albedo minimum of snowl/ice 0.6/0.5 0.45-0.65 8 0
Albedo maximum of snow/ice 0.8/0.75 0.75-0.9 9 3
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List of Figures

1

Climate sensitivity and skill in two ensembles of climatedeals. a) Equilibrium
climate sensitivity as a function of the change in globalwainmean net cloud
radiative effect ACRE) under doubled CQOconditions. The CMIP3 ensemble is
shown with red dots; the models are also labelled. The Higtan of climate sen-
sitivities is similar in the two ensembles, as is the mecsrardriving the variabil-
ity (the change in cloud radiative effect). Background cslimdicate the highest
(red) and lowest (blue) sensitivity models used later. kgtibutions of aggre-
gate skill in present-day simulations of clouds, radiatiemd precipitation for our
perturbed-parameter ensemble (histogram) and from thePGMhsemble (dots).
The skill measure integrates over the annual cycle, thergpbg distribution, and
four variables. Black dots indicate the performance of tasebECHAM model
(atmosphere-only and coupled to an ocean model) within M&8°G ensembile.
Global measure of skill, aggregated over cloud radiatifexts, precipitation and
cloud cover are unrelated to climate sensitivity in a singrisemble and the multi-

model CMIP3 ensemble.
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Relationships between present-day cloud properties amdspheric state in a
perturbed-parameter ensemble. Both figures are restriot#uke tropical (30S

— 30°N) oceans. The ten highest- and lowest-sensitivity modets &énd blue, re-
spectively) in the perturbed-parameter ensemble are sHmwrand whisker plots
summarize the medians (central lines), quartiles (box)emasl range (whiskers)
of the distributions. Observations are shown in black, &edftequency distribu-
tion of models and observations in the lower part of each paydvonthly-mean
values of shortwave cloud radiative effect C&gE(all-sky fluxes minus clear-sky
fluxes) sorted by mid-tropospheric pressure velogiy,. Boundary-layer clouds
dominate in subsiding.(y, > 0) regions where high- and low-sensitivity mod-
els in our ensemble are distinct. Global measures of skibigh, are dominated
by the errors unrelated to climate sensitivity occurringtigh the entire domain.
The grey area indicates regions used in figure 3b. b) Cloudtreel effect in sub-
sidence regions. > 0.03 Pa ¥) sorted by lower tropospheric stability. The
grey background color indicates regions used for weighiinfigure 4b. High-
and low-sensitivity models are distinct through a 4 K ranfistability, though the

ensemble is systematically roughly 2 K less stable thanssied.
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A tightly-focused measure of skill narrows the distribuatdf climate sensitivity in

a simple ensemble. a) Equilibrium climate sensitivity asrecfion of conditionally-
sampled root-mean-square error in shortwave cloud radiaffect of simulations
compared to satellite observations. The error is computdgio regions of de-
scending airgs, > 0.03 Pa 8) and moderate lower tropospheric thermodynamic
stability (13 K< LTS < 17 K) over tropical oceans. b) Distributions of climate
sensitivity estimates before (black) and after weightiggabfunction of the er-
ror in panel a. Weighting by this metric decreases the standeviation of the
distribution by about 23% and increases the mean by 0.35 K. 25
Relationships between present-day cloud properties amdspheric state in a
multi-model ensemble. These figures are constructed inahee svay as figure

3, but the distribution of cloud radiative effect as sortgd.dy,, (a) or lower tro-
pospheric stability in subsiding regions (b) does not dgtish between high- and

low-sensitivity models in the CMIP3 ensemble. 26
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FiG. 1. Climate sensitivity and skill in two ensembles of climatodels. a) Equilibrium climate
sensitivity as a function of the change in global annual neatncloud radiative effect’YCRE)
under doubled C®conditions. The CMIP3 ensemble is shown with red dots; thdatsoare also
labelled. The distribution of climate sensitivities is ganin the two ensembles, as is the mecha-
nism driving the variability (the change in cloud radiateféect). Background colors indicate the
highest (red) and lowest (blue) sensitivity models useelrlab) Distributions of aggregate skill
in present-day simulations of clouds, radiation, and itation for our perturbed-parameter en-
semble (histogram) and from the CMIP3 ensemble (dots). Khlenseasure integrates over the
annual cycle, the geographic distribution, and four vdeisbBlack dots indicate the performance
of the base ECHAM model (atmosphere-only and coupled to aaromodel) within the CMIP3
ensemble.
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FiG. 2. Global measure of skill, aggregated over cloud raceatiffects, precipitation and cloud
cover are unrelated to climate sensitivity in a simple erderand the multi-model CMIP3 ensem-
ble.
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FIG. 3. Relationships between present-day cloud propertiésamospheric state in a perturbed-
parameter ensemble. Both figures are restricted to thecab(80S — 30N) oceans. The ten
highest- and lowest-sensitivity models (red and blue,aetyely) in the perturbed-parameter en-
semble are shown; box and whisker plots summarize the medi@mtral lines), quartiles (box
ends), and range (whiskers) of the distributions. Obsematare shown in black, and the fre-
quency distribution of models and observations in the Igueet of each panel. a) Monthly-mean
values of shortwave cloud radiative effect GdgE(all-sky fluxes minus clear-sky fluxes) sorted
by mid-tropospheric pressure velocity,,. Boundary-layer clouds dominate in subsidingy( >

0) regions where high- and low-sensitivity models in oureanBle are distinct. Global measures
of skill, though, are dominated by the errors unrelated itn&ie sensitivity occurring through the
entire domain. The grey area indicates regions used in figjuré) Cloud radiative effect in sub-
sidence regionsgs,, > 0.03 Pa 3) sorted by lower tropospheric stability. The grey backgibu
color indicates regions used for weighting in figure 4b. Highd low-sensitivity models are dis-
tinct through a 4 K range of stability, though the ensembsg/sgematically roughly 2 K less stable
than is observed.
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FIG. 4. Atightly-focused measure of skill narrows the disttibao of climate sensitivity in a simple
ensemble. a) Equilibrium climate sensitivity as a functadrconditionally-sampled root-mean-
square error in shortwave cloud radiative effect of simatet compared to satellite observations.
The error is computed only in regions of descendingais( > 0.03 Pa 3) and moderate lower
tropospheric thermodynamic stability (13KLTS < 17 K) over tropical oceans. b) Distributions
of climate sensitivity estimates before (black) and afteighiting by a function of the error in
panel a. Weighting by this metric decreases the standarnatamv of the distribution by about
23% and increases the mean by 0.35 K.
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FIG. 5. Relationships between present-day cloud propert@agmospheric state in a multi-model
ensemble. These figures are constructed in the same way ges 3igout the distribution of cloud
radiative effect as sorted hyxy, (a) or lower tropospheric stability in subsiding region¥ dbes
not distinguish between high- and low-sensitivity modalthe CMIP3 ensemble.
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